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0 はじめに

Hechtの『光学』を読んでいたら、点光源からの光を平行光線にするガラス表面の形状が双曲線（または楕円）だと書い

てあるのに出会い、知らなかったので驚いた。

導出の説明は本の記述で十分だったけれども、自分で手を動かして細かい式変形まで完全に確認しようと思った。高校生

の基本的な練習問題程度（微分方程式は高校生程度よりちょっと上だが）のことで、すぐにできたが、またすぐに忘れてし

まうので、メモとして残しておく。

光線が Snell の法則にしたがうと仮定したとき、点光源から放射される光を平行光線に変換するガラスの表面の形状を、

幾何光学で計算する。
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1 点光源からの光を平行光線にする媒質境界の形を与える方程式

曲線 y = y(x) よりも左側が 絶対屈折率 n1 の媒質で、右側が 絶対屈折率 n2 の媒質であるとする。 定数 x0 が存在し、

y(x0) = 0 であるとする。原点に点光源があるとする。
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曲線上の 座標 (x , y ) の点 Qに入射する光線を考える。 x , y ≥ 0 とする。点 Qが曲線上のどこであっても、透過光線

は x軸に平行な方向に屈折するものとする。上図において、この光線の経路は OQPであり、入射角は θi 、屈折角は θr で

ある。

図に「接線」「法線」と示したのは、それぞれ、点 Qにおける曲線の接線と法線である。接線の傾きが
dy

dx
であり、法線

の傾きが（接線に対して垂直なので） − 1(
dy

dx

) であることは以下で用いるので、念頭に置いておく。
θr と θi は、いずれも、 −π

2
〜

π

2
の範囲（光線と法線のなす角のうち直角より小さいほう）とし、符号を次のように定

める。

θr は、図のように QPの下側にできる角を正、反対に上側にできる角を負（すなわち、
dy

dx
が正ならば正、

dy

dx
が負なら

ば負、
dy

dx
が 0 の場合は QPの上側の角を屈折角とみなして −π

2
）とする。

θi は、図のように OQの左上側にできる角を正、反対に右下側にできる角を負（すなわち、
dy

dx
が

y

x
より大きいか −x

y

より小さいならば正、
dy

dx
が

y

x
より小さく −x

y
より大きいならば負、

dy

dx
が

y

x
に等しい場合は OQの左上側の角を入射

角とみなして
π

2
）とする。

Snellの法則が成り立つことより曲線が満たすべき方程式を導く。そのために、 sin θi と sin θr を x , y ,
dy

dx
で表すこと

を考える。
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sin θr は、図の γ が θr に等しいことを考慮すれば、 y と図の s を用いて表せる。 s は、法線の方程式を利用して求める

ことができる。

法線の方程式は、法線の傾きが − 1(
dy

dx

) であることより、法線上の点の座標を (x′ , y′ ) として

y′ = y − 1(
dy

dx

) (x′ − x )

である。これより、法線と x軸との交点の x座標が

(
x+

dy

dx
y

)
であることがわかり、 s =

dy

dx
y であることが導かれる。

ここで、 γ および s は符号を持つ量であるとし、いずれも、法線と x軸との交点が図のように点 Qより右にあるときに正、

反対に左にあるときに負（すなわち、 θr と同じ符号）であるとする。そうすることで、 γ = θr および s =
dy

dx
y が符号も

含めて成り立つと考えることができる。

以上を踏まえると

sin θr = sin γ

=
y√

s2 + y2
·

dy

dx∣∣∣∣dydx
∣∣∣∣

=
1√(

dy

dx

)2
+ 1

·

dy

dx∣∣∣∣dydx
∣∣∣∣ (1)

が得られる。ここで、式の中の

dy

dx∣∣∣∣dydx
∣∣∣∣ は、

dy

dx
の符号であり、 sin θr の符号が θr ひいては

dy

dx
の符号と同じになることを

意味している。

また、次で使うために cos θr も求めておく。

cos θr = cos γ

=
|s|√

s2 + y2

=

∣∣∣∣dydx
∣∣∣∣√(

dy

dx

)2
+ 1

(2)

となる。 cos θr はつねに正であることに留意する。
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sin θi は、 θi が図の α , β を用いて θi = α+ β と表せ、 β が θr に等しいことを利用して導く。

α は 0 〜
π

2
の範囲とする。 β に関しては、 θi が − π

2
〜

π

2
の範囲であるという定義に合わせるために、図と異な

る定義にしなければならない場合が存在するので、場合分けして考える。次のように定める。 β は符号を持つ量とし、

0 <
dy

dx
<

y

x
の場合には β = θr − π であり、それ以外の場合には β = θr であるとする。すると、 θi = α+ β がどの場合

にも符号を含めて成り立つと考えることができる。

これより

sin θi = sin
[
α+ β

]
=


sin
[
α+ θr

]
(
dy

dx
≤ 0 or

dy

dx
≥ y

x
)

sin
[
α+ θr − π

]
( 0 <

dy

dx
<

y

x
)

=


sinα cos θr + cosα sin θr (

dy

dx
≤ 0 or

dy

dx
≥ y

x
)

− sinα cos θr − cosα sin θr ( 0 <
dy

dx
<

y

x
)

α は sinα =
y√

x2 + y2
かつ cosα =

x√
x2 + y2

を満たす角であるから、この 2つを代入し、さらに (1)式と (2)式を代入

すると

sin θi =



x+
dy

dx
y√

x2 + y2

√(
dy

dx

)2
+ 1

·

dy

dx∣∣∣∣dydx
∣∣∣∣ (

dy

dx
≤ 0 or

dy

dx
≥ y

x
)

−
x+

dy

dx
y√

x2 + y2

√(
dy

dx

)2
+ 1

( 0 <
dy

dx
<

y

x
)

(3)

が得られる。
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さて、Snellの法則は
n1 sin θi = n2 sin θr

が成り立つという法則である。 相対屈折率 n12 ≡ n2

n1
を用いれば

sin θi = n12 sin θr

と表せる。

これに (1)式と (3)式を代入すると

x+
dy

dx
y√

x2 + y2

√(
dy

dx

)2
+ 1

·

dy

dx∣∣∣∣dydx
∣∣∣∣ = n12

1√(
dy

dx

)2
+ 1

·

dy

dx∣∣∣∣dydx
∣∣∣∣ (

dy

dx
≤ 0 or

dy

dx
≥ y

x
)

−
x+

dy

dx
y√

x2 + y2

√(
dy

dx

)2
+ 1

= n12
1√(

dy

dx

)2
+ 1

( 0 <
dy

dx
<

y

x
)


すなわち 

x+
dy

dx
y = n12

√
x2 + y2 (

dy

dx
≤ 0 or

dy

dx
≥ y

x
)

x+
dy

dx
y = −n12

√
x2 + y2 ( 0 <

dy

dx
<

y

x
)

 (4)

となる。

これが、「原点の点光源から放射される光を平行光線に変えるような媒質境界」が満たす方程式である。

すべての出発点となる方程式がこれで導き出されたわけであるが、よく考えてみると、(4)式の第 2式は満たされること

がないことがわかる。したがって、実質的に意味のある方程式としては、(4)式の第 1式だけを書けばよいと言える。

(4)式の第 1式を変形して整理すると

dx

dy
=

y

n12

√
x2 + y2 − x

(ただし
dy

dx
≤ 0 or

dy

dx
≥ y

x
) (5)

とできる（
dy

dx
でなく y(x) の 逆関数 x(y) の 導関数

dx

dy
を用いるのは、 y = 0 で発散しないようにするためである）。

以下、(5)式から出発していろいろな結果を導く。
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2 極座標で方程式を解く

(5)式を解く。

極座標 ( r , φ ) を用いる。すなわち

x = r cosφ

y = r sinφ

とおく。 x , y ≥ 0 なので、 r > 0 かつ φ は 0 〜
π

2
の範囲とする。

すると、(5)式の右辺は

y

n12

√
x2 + y2 − x

=
sinφ

n12 − cosφ

となる。

いっぽう、(5)式の左辺は

dx

dy
=

(
dx

dφ

)
(
dy

dφ

)

=

dr

dφ
cosφ− r sinφ

dr

dφ
sinφ+ r cosφ

となる。

よって、(5)式は

dr

dφ
cosφ− r sinφ

dr

dφ
sinφ+ r cosφ

=
sinφ

n12 − cosφ

(
dr

dφ
cosφ− r sinφ

) (
n12 − cosφ

)
= sinφ

(
dr

dφ
sinφ+ r cosφ

)
dr

dφ

(
n12 cosφ− cos2 φ− sin2 φ

)
= r

(
sinφ cosφ+ n12 sinφ− sinφ cosφ

)
dr

dφ

(
n12 cosφ− 1

)
= n12 r sinφ

1

r

dr

dφ
=

n12 sinφ

n12 cosφ− 1

と変形でき、これより ∫ φ

0

1

r

dr

dφ
dφ =

∫ φ

0

n12 sinφ

n12 cosφ− 1
dφ

ln

[
r(φ)

r(0)

]
= − ln

[
n12 cosφ− 1

n12 cos 0− 1

]
ただし、 n12 > 1 の場合、 cosφa =

1

n12
を満たす φa で被積分関数が発散するので、 φ は 0 〜 φa の範囲に限られる。

ln

[
r

x0

]
= ln

[
n12 − 1

n12 cosφ− 1

]
r

x0
=

n12 − 1

n12 cosφ− 1

r =
n12 − 1

n12 cosφ− 1
x0 (6)

を得る。これは、2次曲線の極方程式である。 n12 > 1 ならば双曲線、 n12 < 1 ならば楕円を表す。
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この極方程式が双曲線または楕円をどのようにして表すのか、確認しておく。

2次曲線の極方程式の性質を復習する目的で、一旦、 r が負になる場合も含め φ が 0 から 2π までのすべての範囲での

(6)式の振る舞いを確認する。本書の目的の議論では、 r が負になる範囲や 0 ≤ φ ≤ π

2
以外の範囲は考慮の外にある。

第 1に、n12 > 1 の場合。このとき、(6)式は、原点を 1つの焦点とし、原点より右の x軸上に中心を持つ双曲線を表す。

この場合の、 φ の値に対応する r の値と双曲線の部分を、表にして次に示す。表には、各部分で x , y および
dy

dx
の正負が

どうなっているかを添えて示しておく。

n12 > 1 （双曲線）の場合

φ r 対応する双曲線の部分 x y
dy

dx

0 x0 右枝 頂点 0 +∞

↓ ↓ 上半分
正

正 正

arccos

[
1

n12

]
+∞
−∞

↓ ↓ 第 3象限
負

π

2
−
(
n12 − 1

)
x0 y 軸との交点（下側） 0

負 正

↓ ↓ 第 4象限

π −n12 − 1

n12 + 1
x0 左枝 頂点 正 0 ±∞

↓ ↑ 第 1象限

3π

2
−
(
n12 − 1

)
x0 y 軸との交点（上側） 0

正 負

↓ ↑ 第 2象限
負

2π − arccos

[
1

n12

] −∞
+∞

↓ ↑ 下半分
正

負 負

2π x0 右枝 頂点 0 −∞

矢印は、その向きに値が増加することを表す。

arccos は 0 〜
π

2
の範囲の値とする。

この表の中で、議論の対象としているのは φ が 0 から
π

2
までの範囲だけであり、さらに、(5)式の解の可能性があるの

は φ が 0 から arccos

[
1

n12

]
（ = φa ）までの範囲、つまり、双曲線の右枝の上半分だけである。
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第 2に、n12 < 1 の場合。このとき、(6)式は、原点を 1つの焦点とし、原点より右の x軸上に中心を持つ楕円を表す。こ

の場合の、 φ の値に対応する r の値と楕円の部分を、表にして次に示す。表には、各部分で x , y および
dy

dx
の正負がどう

なっているかを添えて示しておく。

n12 < 1 （楕円）の場合

φ r 対応する楕円の部分 x y
dy

dx

0 x0 頂点（右側） 0 −∞

↓ ↑ 中心より右の上半分 負

arccos
[
n12

] (
1 + n12

)
x0 頂点（上側）

正

0

↓ ↑ 中心より左の第 1象限 正

π

2

(
1− n12

)
x0 y 軸との交点（上側） 0 正

↓ ↑ 第 2象限

π
1− n12

1 + n12
x0 頂点（左側） 負 0 ±∞

↓ ↓ 第 3象限

3π

2

(
1− n12

)
x0 y 軸との交点（下側） 0 負

↓ ↓ 中心より左の第 4象限 負

2π − arccos
[
n12

] (
1 + n12

)
x0 頂点（下側）

正

0

↓ ↓ 中心より右の下半分 正

2π x0 頂点（右側） 0 +∞

矢印は、その向きに値が増加することを表す。

arccos は 0 〜
π

2
の範囲の値とする。

この表の中で、議論の対象としているのは φ が 0 から
π

2
までの範囲だけである。

8



3 方程式の定義域の確認

(6)式は (5)式を解いた結果ではあるものの、まだ「
dy

dx
≤ 0 または

dy

dx
≥ y

x
の場合に限る」という (5)式の条件を考慮

していないので、Snellの法則を満たす解だとは言えない。ここで、この条件を考慮しておく。

第 1に、
dy

dx
≤ 0 という条件を満たすかどうかを調べる。前節の表より、 n12 > 1 の場合には満たすことがなく、 n12 < 1

の場合には φ が 0 から「 cosφc = n12 を満たす φc 」までの範囲で満たす。

第 2に、
dy

dx
≥ y

x
となる条件を満たすかどうかを調べる。これは、(5)式より y > 0 において

dy

dx
=

n12

√
x2 + y2 − x

y
であるから

n12

√
x2 + y2 − x

y
≥ ( y > 0 )

y

x

n12 x

√
x2 + y2 ≥ x2 + y2

n12
2 x2

(
x2 + y2

)
≥
(
x2 + y2

)2
n12

2 ≥ x2 + y2

x2

n12 ≥

√
x2 + y2

x

x√
x2 + y2

が cosφ であることを考慮すると

cosφ ≥ 1

n12

と変形されるので、 n12 > 1 の場合には φ が 0 から arccos

[
1

n12

]
（ = φa ）までの範囲で満たし（ lim

φ→+0

dy

dx
= +∞ で

あることに留意）、 n12 < 1 の場合には満たすことがない。

以上をまとめると、次のように整理できる。 arccos は 0 〜
π

2
の範囲の値として

n12 > 1 の場合には、
dy

dx
≤ 0 を満たす部分はなく、 0 ≤ φ ≤ φa = arccos

[
1

n12

]
の範囲で

dy

dx
≥ y

x
となる。

n12 < 1 の場合には、
dy

dx
≥ y

x
を満たす部分はなく、 0 ≤ φ ≤ φc = arccos

[
n12

]
の範囲で

dy

dx
≤ 0 となる。

このそれぞれの範囲が、(6)式が表す曲線のうち、Snellの法則を満たす (5)式の解と考えられる部分である。

前節の表と照らし合わせると、 n12 > 1 の場合には双曲線の右枝の上半分が解、 n12 < 1 の場合には楕円の短軸から右の

部分の上半分が解、と結論付けられる。
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4 直交座標に変換する

(6)式を
n12 r cosφ− r =

(
n12 − 1

)
x0

と変形し、 r cosφ = x および r =

√
x2 + y2 を代入すると

n12 x−
√

x2 + y2 =
(
n12 − 1

)
x0√

x2 + y2 = n12 x−
(
n12 − 1

)
x0 (7)

が得られる。

さらに変形すると

x2 + y2 = n12
2 x2 − 2n12

(
n12 − 1

)
x0 x+

(
n12 − 1

)2
x0

2

y2 =
(
n12

2 − 1
)
x2 − 2n12

(
n12 − 1

)
x0 x+

(
n12 − 1

)2
x0

2

=
(
n12

2 − 1
) (

x2 − 2n12

n12 + 1
x0 x+

n12 − 1

n12 + 1
x0

2

)
=
(
n12

2 − 1
) ((

x− n12

n12 + 1
x0

)2
− n12

2(
n12 + 1

)2 x0
2 +

n12 − 1

n12 + 1
x0

2

)

=
(
n12

2 − 1
) ((

x− n12

n12 + 1
x0

)2
+

−n12
2 + n12

2 − 1(
n12 + 1

)2 x0
2

)

=
(
n12

2 − 1
) ((

x− n12

n12 + 1
x0

)2
− 1(

n12 + 1
)2 x0

2

)

=
(
n12

2 − 1
) (

x− n12

n12 + 1
x0

)2
− n12 − 1

n12 + 1
x0

2

とでき、これより

(
n12

2 − 1
) (

x− n12

n12 + 1
x0

)2
− y2 =

n12 − 1

n12 + 1
x0

2

すなわち (
x− n12

n12 + 1
x0

)2
x0

2(
n12 + 1

)2 − y2

n12 − 1

n12 + 1
x0

2
= 1 (8)

を得る。これは、2次曲線の直交座標による標準形の方程式である。 n12 > 1 ならば双曲線、 n12 < 1 ならば楕円である。

(8)式より、双曲線または楕円の 中心の x座標 xc が xc =
n12

n12 + 1
x0 であることがわかる。

また、双曲線の 中心から頂点までの距離 a ならびに楕円の 半長軸 a が a =
1

n12 + 1
x0 であり、双曲線・楕円と x軸と

の交点の x座標が x0 と
n12 − 1

n12 + 1
x0 であることがわかる。

また、双曲線の 頂点を通る y 軸に平行な直線が漸近線と交わる点の y 座標の絶対値 b が b =

√
n12 − 1

n12 + 1
x0 であり、楕円

の 半短軸 b′ が b′ =

√
1− n12

1 + n12
x0 であることがわかる。

また、双曲線の漸近線の傾きは ± b

a
= ±

√
n12

2 − 1 である。

また、双曲線上の点の 2つの焦点からの距離の差ならびに楕円上の点の 2つの焦点からの距離の和は 2 a =
2

n12 + 1
x0 で

ある。
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5 焦点と準線

(7)式は、焦点と準線による形式の 2次曲線の方程式である。

(7)式を √
x2 + y2 = n12

(
x− n12 − 1

n12
x0

)

と変形すると、左辺の

√
x2 + y2 は座標 (x , y )の点の定点（原点）からの距離であり、右辺の一部である

(
x− n12 − 1

n12
x0

)
は同じ点の、ある 1つの直線（y 軸に平行な 直線 x =

n12 − 1

n12
x0 ）からの距離であるから、結局のところ、この式は、原点

を焦点とし 直線 x =
n12 − 1

n12
x0 を準線として、焦点からの距離が準線からの距離の定数（ n12 ）倍である、という条件を

表す方程式である。そのような条件を満たす点の集まりは、 n12 > 1 の場合には双曲線、 n12 < 1 の場合には楕円である。

n12 は離心率と呼ばれる。

これより、原点が双曲線・楕円の焦点の 1つであることがわかり、前節で求めた双曲線・楕円の 中心の x座標 xc を考慮

すると、双曲線・楕円の 中心から焦点までの距離 c が c =
n12

n12 + 1
x0 であることがわかる。したがって、双曲線・楕円の

もう 1つの焦点の x座標が
2n12

n12 + 1
x0 であることもわかる。

また、双曲線・楕円の準線は 直線 x =
n12 − 1

n12
x0 であることがわかる。ゆえに、同様に xc を考慮して、双曲線・楕円の

中心から準線までの距離が =
1

n12

(
n12 + 1

) x0 であることがわかる。
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6 波動光学

波動光学を考慮すると、(7)式が物理的に重要な原理を表す式であることが明らかになる。

(7)式を変形して

n1

√
x2 + y2 + n2

(
x0 − x

)
= n1 x0

とできるが、この式の両辺に 定数 n2

(
X − x0

)
（ X は x0 より大きい任意の定数）を加え、両辺を 真空中の光速 C0 で割

ると √
x2 + y2

C1
+

(
X − x

)
C2

=
x0

C1
+

(
X − x0

)
C2

とできる。ただし、 C1 ≡ C0

n1
は 絶対屈折率 n1 の媒質中の光速、 C2 ≡ C0

n2
は 絶対屈折率 n2 の媒質中の光速である。

この式の左辺第 1項は光が原点から 座標 (x , y ) の点まで進むのにかかる時間、左辺第 2項は光がそこから 座標 (X , y )

の点まで進むのにかかる時間であり、結局、左辺全体は、光が原点から 座標 (x , y ) の点を通って 座標 (X , y ) の点まで

進むのにかかる時間を表している。

右辺は x , y を含まない定数である。

結局のところ、この式は、原点から出た光が 曲線 y = y(x) 上のどの点で屈折する経路を通るものもすべて同じ時間で同

じ x座標の位置まで到達することを表している。

曲線を透過して屈折した光が平行光線になるということは、波動光学の観点から言えば平面波になるということである。

x軸に平行に進む平行光線は、波面が y 軸に平行な直線（すなわち x座標が一定の点の集まり）であるような平面波である。

波面とは、光源から出た光が等しい時間で到達する点の集まりである。(7)式はこのことを表す式なのだと理解することが

できる。
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7 2次曲線の公式

7.1 2次曲線の定義に関わる公式

• 標準形の方程式。双曲線の中心・楕円の中心・円の中心・放物線の頂点が 座標 (xc , yc ) の点であり、双曲線の主軸・

楕円の長軸・放物線の軸が x軸に平行である場合。

– 双曲線は (
x− xc

)2
a2

−
(
y − yc

)2
b2

= 1

である。 a が中心から頂点までの距離、 b が、頂点を通る y 軸に平行な直線と漸近線との交点までのその頂点か

らの距離。

– 楕円は (
x− xc

)2
a2

+

(
y − yc

)2
b2

= 1

である。 a が半長軸、 b が半短軸。

– 円は (
x− xc

)2
+
(
y − yc

)2
= R2

である。 R が半径。

– 放物線は

4 p
(
x− xc

)
−
(
y − yc

)2
= 0

である。 p が頂点から焦点までの距離、かつ、頂点から準線までの距離。

• 極方程式。焦点の 1つが原点であり、双曲線の主軸・楕円の長軸・放物線の軸が x軸である場合。

r =
± e d

1± e cosφ

である。複号同順。複号のどちらを選んでも同じ曲線を表す。

e は離心率で、 e > 1 なら双曲線、 e = 1 なら放物線、 0 < e < 1 なら楕円、 e = 0 なら円になる。

d は準線の x座標。

d > 0 の場合 −→

 2つの焦点のうち左の焦点が原点であるような双曲線
2つの焦点のうち右の焦点が原点であるような楕円

左に開いた放物線

 になる。

d > 0 の場合 −→

 2つの焦点のうち右の焦点が原点であるような双曲線
2つの焦点のうち左の焦点が原点であるような楕円

右に開いた放物線

 になる。

• 双曲線は、2つの焦点からの距離の差が等しい点の集まりである。その一定である「2つの焦点からの距離の差」は

2 a

である。

• 楕円は、2つの焦点からの距離の和が等しい点の集まりである。その一定である「2つの焦点からの距離の和」は

2 a

である。

• 2次曲線は、焦点と準線からの距離の比が一定である点の集まりである。その一定である比は、焦点からの距離を r 、

準線からの距離を q として
r

q
= e

である。
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7.2 2次曲線の中心・焦点・準線・軸・漸近線に関わる公式

• 双曲線・楕円において、 中心から焦点までの距離 c は

c = e a

である。 焦点の x座標 xf1 , xf2 は

xf1 = xc + e a , xf2 = xc − e a

である。

• 放物線において、中心から焦点までの距離は
|p|

である。 焦点の x座標 xf は

xf = xc + p

である。

• 双曲線・楕円において、中心から準線までの距離は
1

e
a

である。 準線の x座標 xd1 , xd2 は

xd1 = xc +
1

e
a , xd2 = xc −

1

e
a

である。ただし、 xd1 は右の焦点（x座標 xf1 ）に対応する準線の x座標であり、 xd2 は左の焦点（x座標 xf2 ）に

対応する準線の x座標である。

• 放物線において、中心から準線までの距離は
|p|

である。 準線の x座標 xd は

xd = xc − p

である。

• 双曲線では、離心率から a と b の比が定まり
b

a
=
√
e2 − 1

となる。

• 双曲線の漸近線の傾きの絶対値は
b

a

である。

• 楕円では、離心率から a と b の比が定まり
b

a
=
√
1− e2

となる。

• 双曲線では
a2 + b2 = c2

が成り立つ。

• 楕円では
a2 − b2 = c2

が成り立つ。
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7.3 標準形の方程式と極方程式の相互変換に関わる公式

• 双曲線で、焦点の 1つが原点である場合

a =
e

e2 − 1
|d|

b =
e√

e2 − 1
|d|

である。

• 楕円で、焦点の 1つが原点である場合

a =
e

1− e2
|d|

b =
e√

1− e2
|d|

である。

• 双曲線・楕円で、焦点の 1つが原点である場合

xc =
e2

e2 − 1
d

である。

• 放物線で、焦点が原点である場合

p = −d

2

xc =
d

2

である。

• 双曲線では

e =

√
1 +

b2

a2

である。

• 楕円では

e =

√
1− b2

a2

である。

• 双曲線で、焦点の 1つが原点である場合

d = ∓ b2√
a2 + b2

である。右の焦点が原点である場合は復号の − を選び、左の焦点が原点である場合は復号の + を選ぶ。

• 楕円で、焦点の 1つが原点である場合

d = ± b2√
a2 − b2

である。右の焦点が原点である場合は復号の + を選び、左の焦点が原点である場合は復号の − を選ぶ。
• 放物線で、焦点が原点である場合

d = −2 p

である。
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7.4 前節までの議論の状況に対応する公式

前節までの議論では、双曲線または楕円の場合で、いずれにおいても左の焦点が原点であり、曲線と x軸との 2つの交点

のうち右の交点の x座標が x0 である。すなわち、 ( c+ a ) の値が x0 と定まっている。

そしてまた、 離心率 e の値が n12 と定まっている。

この状況では、以下が成り立つ。

• a 。

a =
1

e+ 1
x0

• b 。双曲線で

b =

√
e− 1

e+ 1
x0

楕円で

b =

√
1− e

1 + e
x0

• 中心から焦点までの距離 c 。

c =
e

e+ 1
x0

• 中心の x座標 xc 。

xc =
e

e+ 1
x0

• 原点の 焦点の x座標 xf2 。（自明。）

xf2 = 0

• 原点以外の 焦点の x座標 xf1 。

xf1 =
2 e

e+ 1
x0

• 原点の焦点に対応する 準線の x座標 d 、あるいは xd2 。（この状況においては d と xd2 は同じものを指す。）

d =
e− 1

e
x0

xd2 =
e− 1

e
x0

• 原点以外の焦点に対応する 準線の x座標 xd1 。

xd1 =
e2 + 1

e ( e+ 1 )
x0
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